skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Yasheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PurposeTo introduce a novel deep model‐based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k‐space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. MethodsSPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high‐quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA‐based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self‐supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. ResultsWe validate SPICER on both open‐access datasets and experimentally collected data, showing that it can achieve state‐of‐the‐art performance in highly accelerated data acquisition settings (up to ). Our results also highlight the importance of different modules of SPICER—including the DMBA, the CSM estimation, and the SPICER training loss—on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre‐estimation methods especially when the ACS data is limited. ConclusionDespite being trained on noisy undersampled data, SPICER can reconstruct high‐quality images and CSMs in highly undersampled settings, which outperforms other self‐supervised learning methods and matches the performance of the well‐known E2E‐VarNet trained on fully sampled ground‐truth data. 
    more » « less
  2. Abstract INTRODUCTIONVascular damage in Alzheimer's disease (AD) has shown conflicting findings particularly when analyzing longitudinal data. We introduce white matter hyperintensity (WMH) longitudinal morphometric analysis (WLMA) that quantifies WMH expansion as the distance from lesion voxels to a region of interest boundary. METHODSWMH segmentation maps were derived from 270 longitudinal fluid‐attenuated inversion recovery (FLAIR) ADNI images. WLMA was performed on five data‐driven WMH patterns with distinct spatial distributions. Amyloid accumulation was evaluated with WMH expansion across the five WMH patterns. RESULTSThe preclinical group had significantly greater expansion in the posterior ventricular WM compared to controls. Amyloid significantly associated with frontal WMH expansion primarily within AD individuals. WLMA outperformed WMH volume changes for classifying AD from controls primarily in periventricular and posterior WMH. DISCUSSIONThese data support the concept that localized WMH expansion continues to proliferate with amyloid accumulation throughout the entirety of the disease in distinct spatial locations. 
    more » « less
  3. Parallel magnetic resonance imaging (MRI) is a widely-used technique that accelerates data collection by making use of the spatial encoding provided by multiple receiver coils. A key issue in parallel MRI is the estimation of coil sensitivity maps (CSMs) that are used for reconstructing a single high-quality image. This paper addresses this issue by developing SS-JIRCS, a new self-supervised model-based deep-learning (DL) method for image reconstruction that is equipped with automated CSM calibration. Our deep network consists of three types of modules: data-consistency, regularization, and CSM calibration. Unlike traditional supervised DL methods, these modules are directly trained on undersampled and noisy k-space data rather than on fully sampled high-quality ground truth. We present empirical results on simulated data that show the potential of the proposed method for achieving better performance than several baseline methods. 
    more » « less